Is Black the New Green? The Potential of **Biochar for Tree** Management

Kelby Fite, Ph.D.

SCIENTIFIC TREE CARE SINCE 1902

The Potential of Biochar as a Soil Amendment

"Terra preta" in Amazonian agriculture was amended with charcoal

Potentially hundreds or thousands of years old

High OM and available nutrients

Figure 2. Dark earth from the Amazon, with biochar which accumulated about 800 years before present and still shows a distinctly black color, indicating the high stability of biochar (compare black topsoil with the yellow underlying material in the pit).

A Brief Compend of American Agriculture by R.L. Allen (1847):

Charcoal dust [drilled in with the seed] has been found to increase the early growth from four to ten-fold (p. 150).

Scattered over the ground ... [charcoal] absorbs and condenses the nutritive gases within its pores, to the amount of from 20 to over 80 times its own bulk. ... Charcoal ... often checks rust in wheat, and mildew in other crops; and in all cases mitigates their ravages, where it does not wholly prevent them (p. 45).

A dressing of charcoal has in many instances, been found an adequate preventative [of rust]; and so beneficial has it proved in France, that it has been extensively introduced there for the wheat crop (p. 109).

Figure 1. Concept of low-temperature pyrolysis bio-energy with biochar sequestration. Typically, about 50% of the pyrolyzed biomass is converted into biochar and can be returned to soil.

8 weird ways to save the Earth

Biochar

Currently farmers, foresters, and others that dispose of plants and trees usually leave them in the field to rot, or they burn them. Both those actions release carbon into the atmosphere.

How it works: This plan calls for farmers and the like to feed their waste into a machine that turns it into charcoal, seen here. The charcoal - or biochar - is then buried in the soil.

That would keep up to 40% of the carbon in the plant out of the atmosphere, and make the soil richer at the same time, said Jim Fournier, president of Biochar Engineering Corp.

COURTESY: BIOCHAR ENGINEERING CORP.

Why it might not work: Questions remain over whether biochar could absorb enough carbon to make a difference in global warming.

EDITED BY JOHANNES LEHMANN AND STEPHEN JOSEPH

Waste materials have potential to become quality biochar

Principal Constituents of Biochar:

- Moisture (as delivered)
- Ash (as delivered and from what)
- Mobile Matter versus Resident Matter
 - Mobile can migrate out of the char
 - Resident stays with the char & soil
 - Matter = Carbon and H&O portions
 - Carbon is measured for CO₂ sequestration, but plants care about soluble organics and plant nutrients available in the soil

What causes the variations in Mobile and Resident Matter?

What it was made from and the way it was made.

Principal Constituents of Biochar:

- Moisture (as delivered)
- Ash Content (as delivered and from what)
- Mobile Matter versus Resident Matter
- **Cation Exchange Capacity** Buyer Bewar
- **Adsorption Capacity** •

High surface area and porosity are keys to biochar effects

Heat treatment temperature Celsius

111.10

Char contains benefits of soil organic matter and is more stable – no nutrition!

Increase CEC

Improve water retention
Improve fertilizer effectiveness

Benefits are just now being realized in agriculture

Bruno Glaser · Johannes Lehmann · Wolfgang Zech

Biology and fertility of soils 35, 219-230

Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review

Table 1 Relation between charcoal amendments to soil and crop response

Treatment	Amendmen (Mg ha−1)	t Biomass	Plant height	Root	Shoot is biomass	Plant type	Soil type	Reference
		(70)	(70)	(70)	(70)			
Control Charcoal	_ Unknown	100 113	100 124	-	_	Bauhinia wood Bauhinia wood	Alfisol/Ultisol Alfisol/Ultisol	Chidumayo (1994)
Control	-	100	-	-	-	Soybean	Volcanic ash soil, loam	Kishimoto and Sugiura (1985)
Charcoal	0.5	151	-	-	-	Soybean	Volcanic ash soil, loam	Iswaran et al. (1980)
Charcoal	5.0	63	-	-	-	Soybean	Volcanic ash soil, loam	Kishimoto and Sugiura (1985)
Charcoal	15.0	29	-	-	-	Soybean	Volcanic ash soil,	
Control	-	100	_	-	-	Pea	Dehli soil	Iswaran et al. (1980)
Charcoal	0.5	160		-	-	Pea	Dehli soil	
Control	-	100	—	-	—	Moong	Dehli soil	
Charcoal	0.5	122	—	-	—	Moong	Dehli soil	
Control	-	100	-	100	-	Cowpea	Xanthic Ferralsol	Glaser et al. (2002a, 2002b)
Charcoal	33.6	127	—	-	—	Oats	Sand	
Charcoal	67.2	120	-	-	—	Rice	Xanthic Ferralsol	
Charcoal	67.2	150	-	140	—	Cowpea	Xanthic Ferralsol	
Charcoal	135.2	200	—	190	—	Cowpea	Xanthic Ferralsol	
Control	-	100	100	100	100	Maize	Alfisol	Mbagwu and Piccolo (1997)
Coal humic acid	0.2	118	114	122	114	Maize	Alfisol	
Coal humic acid	2.0	176	145	186	166	Maize	Alfisol	
Coal humic acid	20.0	132	125	144	120	Maize	Alfisol	
Control	_	100	100	100	100	Maize	Inceptisol	
Coal humic acid	0.2	125	119	122	127	Maize	Inceptisol	
Coal humic acid	2.0	186	148	198	173	Maize	Inceptisol	
Coal humic acid	20.0	139	131	147	130	Maize	Inceptisol	
Control	-	100	100	100	-	Sugi trees	Clay loam	Kishimoto and Sugiura (1985)
Wood charcoal	0.5	249	126	130	-	Sugi trees	Clay loam	
Bark charcoal	0.5	324	132	115	_	Sugi trees	Clay loam	
Activated charcoal	0.5	244	135	136	_	Sugi trees	Clay loam	

Arboriculture & Urban Forestry 2022. 48(3):176–202 https://doi.org/10.48044/jauf.2022.014

The Influence of Biochar Soil Amendment on Tree Growth and Soil Quality: A Review for the Arboricultural Industry

By Emma Schaffert, Martin Lukac, Glynn Percival, and Gillian Rose

Biochar raw material	рН	C:N ratio	CEC (cmol [+] kg ⁻¹)	EC (dS m ⁻¹)	Ash content (%)	Bulk density (g cm ⁻³)
Pelletized sawdust (Sackett et al. 2015; Lin et al. 2017; Fields-Johnson et al. 2018; Ow et al. 2018; Rafique et al. 2020)	6.3, 7.5, 8.3	10.5 - 13.2	6.2 - 6.4	3.3	3.11 - 25.7	0.13
Wood residues (coniferous) (Pluchon et al. 2014; Sarauer and Coleman 2018; Fujita et al. 2020; Phillips et al. 2020)	6.2 - 8.3	66.9	18.6 - 22.9	2.2 - 3.7	40.3 (at 980 °C)	0.17 - 0.44
Wood residues (hardwood) (Di Lonardo et al. 2017; Safaei Khorram et al. 2019; Shan and Coleman 2020; Somerville et al. 2020)	6.8-9.7	60.4 - 138	30	2.6	19.8	0.33 - 0.42
Chicken manure (Domingues et al. 2017; Lin et al. 2017)	9.8 - 11.9	11.9	41	5.8 - 7.4	48.8 - 56	NC
Rice husk (Häring et al. 2017; Amirahmadi et al. 2020; Wiersma et al. 2020)	8.1-9.1	70.7	18.28	NC	45.2	0.18-0.22
Nut husk (Rajkovich et al. 2012; Lefebvre et al. 2019)	7.66 - 9.6	158 - 181	5.9 - 11.8	1.42 - 1.60	1.69 - 7.80	NC
Bamboo (Ye et al. 2015)	8.5 - 10.2	24.48 - 28.92	NC	NC	9.5 - 14.2	NC
Orchard prunings 9.8 63.53 Ventura et al. 2014; Genesio et al. 2015; Sorrenti and Toselli 2016)		63.53	101	NC	NC	0.33
Sewage sludge (Paneque et al. 2016; Silva et al. 2016)	7.50, 8.41	6.12	NC	7.29	25.6	NC

Table 1. Summary of the main characteristics of biochar, as affected by raw material used for pyrolysis. NC = not communicated.

Biochar raw material	рН	C:N ratio	CEC (cmol [+] kg ⁻¹)	EC (dS m ⁻¹)	Ash content (%)	Bulk density (g cm ⁻³)
Pelletized sawdust (Sackett et al. 2015; Lin et al. 2017; Fields-Johnson et al. 2018; Ow et al. 2018; Rafique et al. 2020)	6.3, 7.5, 8.3	10.5 – 13.2	6.2 – 6.4	3.3	3.11 – 25.7	0.13

Control 5% char 5% comp 5% char + compost Blending with compost always outperforms straight char

What will biochar do in street tree pits?

Hyland Johns grant

Urban site: City tree pits in Bucktown neighborhood in Chicago

Bolingbrook, IL

Arboriculture & Urban Forestry 2022. 48(3):203-214 https://doi.org/10.48044/jauf.2022.015

An Arboriculture Treatment of Biochar, Fertilization, and Tillage Improves Soil Organic Matter and Tree Growth in a Suburban Street Tree Landscape in Bolingbrook, Illinois, USA

By Bryant C. Scharenbroch, Kelby Fite, and Michelle Catania

Figure 1. Temporal responses of soil organic matter. Mean, standard errors of the means, and Tukey's HSD post hoc tests for soil organic matter. Abbreviations: null = N, tillage = T, fertilization + tillage = FT, biochar + tillage = BT, and biochar + fertilization + tillage = BFT.

Can biochar affect pest resistance?

Disease Control and Pest Management

Induction of Systemic Resistance in Plants by Biochar, a Soil-Applied Carbon Sequestering Agent

Yigal Elad, Dalia Rav David, Yael Meller Harel, Menahem Borenshtein, Hananel Ben Kalifa, Avner Silber, and Ellen R. Graber

First, second, third, fourth, and fifth authors: Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center, Agricultural Research Organization, and sixth and seventh authors: Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel.

Accepted for publication 12 May 2010.

Phytopathology Vol. 100, No. 9, 2010

Time after infection (days)

Fig. 3. Effect of biochar mixed in potting medium on development of gray mold (*Botrytis cinerea*) on attached leaves of tomato plants 21 days after planting. Disease is presented as percentage of maximal severity values following inoculation with drops of conidia suspension and as area under the disease progress curve \pm standard error (AUDPC \pm SE) through 6 days. Plants were incubated at 20 \pm 1°C, 97 \pm 3% relative humidity, and 1,020 lux light intensity. Bars represent the standard error of the mean of eight replicates. At a given sampling date data points labeled by a common letter are not significantly different according to Fisher's protected least significant difference test.

Fig. 5. Effect of biochar in potting medium on symptoms of <u>broad mite</u> (*Polyphagotarsonemus latus*) on <u>pepper plants</u> 57 days after planting. Severity is presented as percentage of plant damaged. Bars represent the standard error of each mean. Plants were incubated at $20 \pm 1^{\circ}$ C, $97 \pm 3\%$ relative humidity, and 1,020 lux light intensity. Each mean is an average of five replicates. Treatments followed by a common letter are not significantly different according to Fisher's protected least significant difference test.

Explanations?

Toxic residue (tars, glycols, acids)
Microbial population shifts

Importance of Microorganisms for Plant Physiology We all know about mycorrhizal fungi

Review

Biochar effects on soil biota – A review

Johannes Lehmann^{a,*}, Matthias C. Rillig^b, Janice Thies^a, Caroline A. Masiello^c, William C. Hockaday^d, David Crowley^e

Soil Biology & Biochemistry 43 (2011) 1812-1836

Biochar amendment consistently increased mycorrhizal colonization of roots

Also shifted soil microbial communities, favored populations of known beneficial groups

Biochar has shown preliminary benefits for managing *phytophthora* root rot

Vinca and Gardenia inoculated with Phytophthora

Biochar

High Biochar

No amendment

Red Oak Seedlings – Drew Zwart UW

- •Potted in 0% (control), 5%, 10%, 20% biochar
- •Wound inoculated with agar plug P. cinnamomi
- Measured vertical lesion expansion and % circumference girdled based on bark discoloration

Disease Progression (girdling %) was reduced with biochar and further reduced with phosphite

Expansion of Necrotic Lesion in Maple

Results- Stem water potential

Maximum assimilation rate of CO₂ (A) over time

Zwart and Kim December 2012 HortScience

Biochar Amendment Increases Resistance to Stem Lesions Caused by Phytophthora spp. in Tree Seedlings

HortScience

What DOESN'T biochar do?

Immediate fertility effects

 Need to add fert and/or compost with biochar for short term effects

Always act the same

 Soil type, moisture, source of char, plant species, and many other factors alter effects

Allow us to ignore other factors

- This isn't a silver bullet or a fix-all
- Cook, clean, laundry, etc.

Biochar bottom line

 The future is promising •We are seeing positive responses soil initially physiological over time -> tree aesthetics • Buyer beware! Lots of questions