

About Us & Our Team

Mission Statement, Expertise & Silva Cell

The DeepRoot Mission

To restore ecosystem services to the built environment by integrating trees, soil and stormwater.

With significant contributions by: E. Thomas Smiley, PhD Bartlett Tree Research Laboratory Bill Hunt, PhD NC State University

Silva Cell 2

Soil volume capacity: approximately 10 cubic ft of soil

Soil volume capacity: approximately 20 cubic ft. of soil

3x system

Soil volume capacity: approximately 30 cubic ft. of soil

DESIGN FEATURES

FOOTPAD & BASE

*Allows easy walking during installation.

*Posts twist & snap into base cups with a quarter turn. *high density polyethylene.

POST

*Engineered to transfer paving loads vertically downward to a compacted sub-base. *Posts come in 2 sizes that can be combined using a quarter turn to create a third size. *high density polyethylene.

DECK

*Permeable to allow water to flow through. *Easier to snap into place on top of posts. *glass filled reinforced polypropylene.

SILVA CELL 2 – ADDED VALUE FOR YOU

streamlined SYSTEM

Lighter with 20% less material and a lower carbon footprint. More efficient space delivers same functional soil volume but requires less excavation depths. More durable to withstand the construction installation process. Open rooting space delivers functional soil to the entire void space available.

SILVA CELL 2 – ADDED VALUE FOR YOU

streamlined SYSTEM

Lighter with 20% less material and a lower carbon footprint. More efficient space delivers same functional soil volume but requires less excavation depths. More durable to withstand the construction installation process. Open rooting space delivers functional soil to the entire void space available.

faster INSTALLATION

Fewer pieces, and all parts snap or twist together with greater fit tolerances. Elimination of cross beam enables easy walking access during installation. Industry leading 12 inch openings readily accommodates new or existing utilities. Each stack stands alone as a module, givigo greater design flexibility and allowing adjustments in the field.

@ Rhod

How to Size a Successful System?

1000 cubic feet of healthy soil can store 1500 gallons

DeepRoot

Bring The Functionality of the Forest to the City The Silva Cell

Basic Applications:

Parking lots; parking lay-bys; plazas and promenades; green walls; green roofs & break-out zones

Wilmington, NC Silva Cell Field Test

- Two Silva Cell site installations completed in July 2012
- Two types of bioretention soil
- Systems wrapped in impermeable geomembranes
- 700 ft³ (19.8 m³) of soil for tree growth and stormwater treatment
- Planted with Crape Myrtle (Lagerstroemia spp.)

Catchment Areas

Designation	Silva Cell A	Silva Cell B		
Location	10th Street and Ann Street	10th Street and Orange Street		
Catchment Area (ac)	0.14	0.12		
Average Slope (%)	1.8	2.5		
Imperviousness (%)	100	100		

First Level of Frames + Underdrains Installed

First layer of frames and underdrains...

Second layer of frames...

Wilmington Silva Cell Monitoring Water Quality Results

Pollutant	Ann Street			Orange Street			PQL⁵ (mg/Lª)	Bioretention Systems in Peer Reviewed*Significantly differer (α=0.05)Reviewed 			
	n	IN (mg/ L ^a)	OUT (mg/ L ^a)	Change in Concentration	n	IN	OUT	Change in Concentration		Change in Concentration	of µg/L ^S Sign test used for statistical comparison ^T Paired t test used for statistical comparison "-" negative sign indicates a decrease pollutant concentratio ^b Practical quantification limit ^c based on mean from Brown and Hunt 2011
TKN	21	0.75	0.22	-71%T*	18	1.99	0.33	-84% T*	0.38	-9	
NO2,3-N	21	0.08	0.05	-35%T*	18	0.17	0.07	-60% T*	0.006	+14	
TAN	21	0.11	0.03	-73% T*	18	0.33	0.08	-76% T*	0.006	-79	
TN	21	0.82	0.27	-66% T*	18	2.17	0.40	-82% T*	NA		
0-P04 ⁻³	20	0.03	0.01	-70% T*	19	0.18	0.03	-82% T*	0.006	NA	Davis et al 2001, Diel and Clausen 2006,
TP	21	0.12	0.03	-72% T*	18	0.41	0.11	-74% T*	0.01	+70	Hunt et al 2006, Hunt al 2008, Li and Davis
TSS	21	45	6	-86% S*	19	101	8	-92% T*	5-10	-79	2009, and Passeport
Cu ^a	21	14.3	2.1	-85% T*	19	10	1.4	-86% T*	2	-28	(2014) (2014)
Pb ^a	21	9.8	1.0	-90% S*	19	16	1.0	-94% T*	2	-29	
Zn ^a	21	64	11	-83% T*	19	82	11	-76% T*	10	-78	

in units for arison sed for arison ٦ rease in ntration mit In from t 2011, , Dietz)06, Hunt et Davis seport et e et al

Blue: below detection limits

Green: Tree/Soil Systems performed better than mean for bioretention in peer reviewed literature per Page et al 2014

Purple: no comparison from peer reviewed literature provided in Page et al 2014

Table adapted from Page, Winston and Hunt

TOTAL: 871 CELLS

Lincoln Center Barclay Capital Grove

Mountlake Terrace, WA Parking Lot Retrofit-Stormwater Captured for Passive Irrigation

Permeable Concrete Conveys Stormwater into the Silva Cells

2013 Tree Growth Update

2014 Tree Growth Update

2017 Tree Growth Update

SILVA CELL WITH RAINGARDEN AND PERMEABLE PAVERS

NOT TO SCALE

Aurora Avenue, Shoreline, WA

Capturing roadway runoff

Marquette & 2nd Avenue

Trees and stormwater Silva Cell installation (Minneapolis, MN)

Trees & Storm water- Marquette & 2nd Avenue

- The catchment area : 6.6 acres (2.64 hectares)
- •179 trees
- 90% rain event-1.02"
- •670 ft3 of bioretention mix soil Per Tree
 •stores 134 ft3 (3.7 m3) of stormwater. Per tree
 •Water Treated: 24,000 ft3; 180,000 gallons
 •Public Bid Tabulations: \$13.42 per cubic foot
 •50-60 year CSO solution

Rather than spending \$7.5M to replace the sewer system, the City of Minneapolis spent \$1.5M on Silva Cells to meet their stormwater treatment goals.

Case Study: Meet Local Stormwater Requirements Technology Campus, San Mateo, CA

DeepRoot

Atlanta-Historic Fourth Ward Park-2011 Installation

2013 Update

2013 Update

2015 Update

100 Peachtree Plaza, Atlanta- 2015 Installation

Center Street-North Augusta-2018

Center Street Plaza

Center Street Plaza Newly Planted Trees

Center Street Plaza-2019

Center Street-2019

Centennial Olympic Park-2018

DeepRoot Green Infrastructure

Brenda Guglielmina Project Manager-Southeastern Region 404-378-9390 brenda@deeproot.com

www.deeproot.com

