Preventing and Mitigating Soil Compaction Due to Foot Traffic

Holly Campbell September 28, 2022 2022 GTC Campus Tree Conference Georgia Gwinnett College

Soil? Don't You Mean Dirt?

- Soil not a dirty word
- Soil matters

Campus Challenges (Notably in Urban Areas)

5408049

UGA1397130

What Trees Require for Health & Growth (A few of the most vital)

 CO_2

 O_2

Importance of Roots in Tree Health

Tree Health Tied to Soil Health

Tree Health Challenge on College Campuses: SOIL COMPACTION

Undisturbed

1.32 g/cm3 45% solid 50% Pores

1.60 g/cm3 60% Solid 40% Pores

Compacted soil: pore space/ aeration water movement bulk density*

* Bulk density values vary based on soil texture

Gas Exchange: Essential for Roots

Adapted from Vomocil and Flocker, 1961

Graphic courtesy of L.A. Morris

Compaction: Decreased Gas Exchange & Decreased Water Movement

undisturbed soil

compacted soil

Air Water

roots need gas exchange and water movement

Soil Strength Affects Root Growth

Graphic courtesy of L.A. Morris

Adapted from Taylor and Barr, 1991; Greacen and Sands, 1980

Example of Compaction

Soil Compaction Signs

- Increased surface runoff
- Pooling of water
- Reduced plant growth
- Exposed soil and/ or soil crusting
- Limited soil animal activity
- Hard soil
- Surface root exposure

Credit: Chicago Tribune

Compaction: Two Types

Deep compaction:

- Heavy equipment
- <u>Depth</u>: up to 2 feet (or more)

Compaction increased when soil is wet

Compaction: Two Types

Surface compaction:

- Foot traffic
- <u>Depth</u>: soil surface to approx. 6 inches

Compaction increased when soil is wet

Preventing or Ameliorating Surface Compaction

COMPACTION IS DIFFICULT TO CORRECT,

BUT NOT IMPOSSIBLE TO CORRECT

1. Anticipate & Address Compaction in High Use Areas

Confine Traffic

Aerate Soil

Add Mulched Areas

2 - 4 inches of chunky mulch (large, irregular bark or wood mulch)

Mulched areas, though slower acting in reversing compaction, provide valuable organic matter to the soil. Over time, this organic matter decreases impact of soil compaction.

Permeable pavement protects the soil surface and allows water infiltration

Other Methods

- Air-spading/ Air tillage
- Vertical mulching
- Radial trenching
- Rototilling (hardpan can develop)

Radial trenching

Air-spading

Vertical

mulching

2. Barriers

Discourage traffic in certain areas

City of Greenville, SC barriers to protect soil. Silva cells are under sidewalk.

Real Providence

3. Covering Soil

- Silva cells (\$\$\$, but effective to protect and increase soil volume)
- Suspended pavement

City of Greenville, SC café' area Permeable pavers over Silva Cells

Resources: Bulk Density

Soil Texture	Ideal Bulk Density (BD) g/cm3	Marginal BD g/cm3	Restrictive BD g/cm3
Sands, loamy sands	<1.60	1.69	>1.80
Sandy loams, loams	<1.40	1.63	>1.80
Sandy clay loams, loams, clay loams	<1.40	1.60	>1.75
Silts, silt loams	<1.30	1.60	>1.75
Silt loams, silty clay loams	<1.40	1.55	>1.65
Sandy clays, silty clays, some clay loams (35-45% clay)	<1.10	1.49	>1.58
Clays (>45% clay)	<1.10	1.39	>1.47

Source: Soil Quality Test Guide. USDA, 1999

Steps for measuring soil bulk density: <u>http://soilquality.org.au/factsheets/bulk-density-measurement</u>

UNIVERSITY OF GEORGIA Warnell School of Forestry & Natural Resources

Thank You!

Resources:

NRCS Urban Soil Primer: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052835.pdf

Virginia Tech: Soil Profile Rebuilding: https://www.urbanforestry.frec.vt.edu/SRES/
More Information:

Ms. Holly Campbell, Public Service Assistant, UGA Warnell School of Forestry and Natural Resources, <u>hollycam@uga.edu</u>

Special thanks to Dr. Larry Morris for use of some of his graphics.